- •Effect of <u>strain-hardening</u> on: properties microstructure
- •Effect of heat treatment following deformation

recovery recrystallization grain growth

Strengthening Mechanisms

Recall: strength is a measure of a materials' ability to resist plastic deformation

Review: strengthening mechanisms
effect of grain size
effect of solute atoms
effect of dislocations (strain hardening)

Strengthening Mechanisms (strain hardening)

• Bottom line: Strength increases with increased levels of plastic deformation.

Why?

Strengthening Mechanisms (strain hardening)

- (1) Dislocations strain fields can repulse each other.
- (2) Dislocations lines can intersect each other and become pinned.

Strain-hardening Work-hardening Cold-working

= plastic deformation of a metal at ambient temperature

- Cold working can be a processing method:
- Advantage: the product can become strengthened as the final shape is obtained.

• How do you cold work a material?

We've seen one way:

• Manufacturing processes

• Ability of a material to cold work is quantified by the <u>strain hardening exponent</u>

- Cold working increases yield and tensile strength.
- BUT cold work decreases ductility, electrical conductivity and corrosion resistance.

TRADEOFF!

Define: $%CW=100[(A_o-A_f)/A_o]$

Cold working: Effect on properties

Cold working: Effect on microstructure

- Grains rotate and elongate, which introduces preferred orientations or <u>texture</u>.
- Preferred grain orientations cause anisotropy
- Cold working can introduce residual stress.

ained strained ...

unstrained

(Residual Stress in Glasses)

Has nothing to do with cold working

Heat Treatment Following Deformation

Heat treatment following deformation

- Deformed material contains residual stress and strain energy
- Annealing a deformed material at high temperature can release this energy and revert material back to original state.
- Reversion at a given temperature occurs in three stages:

 $\frac{\text{Recovery} \Rightarrow \text{Recrystallization} \Rightarrow \text{Grain growth}}{\text{Increasing time at temperature}}$

Recovery

- During recovery, <u>diffusion</u> occurs so as to relieve the strain energy by:
 - lowering the dislocation density
 - producing low energy dislocation configurations (polygonization)
- Residual stresses are relieved but the mechanical properties remain unchanged (stress relief annealing).
- Electrical conductivity is restored.

Recrystallization

- During recrystallization, new strain-free, equiaxed grains are created and grow to replace strained material.
- Short range <u>diffusion</u> enables this process.
- Driving force ⇒ internal energy difference between strained and unstrained material.

Grain growth

- Large grains grow at the expense of smaller ones.
- Boundaries move by <u>diffusion</u> of atoms from one side of the boundary to another.
- Driving force ⇒ reduction of energy associated with the grain boundaries.

Effect of Annealing Temperature

Annealing Temperature (°C)

Recrystallization temperature needs to be defined for a particular time (i.e., T at which recrystallization is complete in 1h)

Recrystallization is easier for

- •high CW levels
- •small CW grain size
- •low melting point metals
- •pure metals

Example

Cylinder of brass with 0% CW has an initial diameter of 6.4 mm and it is to be cold-worked by drawing. It is required to have a yield strength of 345 MPa, an elongation at failure of at least 20%, and a final diameter of 5.1 mm.

Design a process to obtain the desired parameters.

Hot working

- Plastically deforming a metal at a temperature above the recrystallization temperature is called hot working.
- Advantages:
 - strengthening does not occur during hot working, allowing large reductions in size.
 - imperfections are eliminated or minimized
- Disadvantages:
 - anisotropic due to uneven temperature profiles
 - poor surface finish compared to cold working (oxidation)

